Oxidation and Reduction of Diazofluorene. A Pulse-radiolysis Study

John E. Packer *† and Robin L. Willson

Biochemistry Department, Brunel University, Uxbridge, Middlesex UB8 3PH

In neutral solution the radical Me₂COH reduces diazofluorene (FIN₂) to FIN₂H• with k 4.6 × 10⁸ dm³ mol⁻¹ s⁻¹ and this *N*-protonated radical (ϵ 3 850 dm³ mol⁻¹ cm⁻¹) decays in a second-order reaction with 2k 3.7 × 10⁸ dm³ mol⁻¹ s⁻¹. FIN₂H• does not react with oxygen. In the presence of NaOH FIN₂^{-•} is formed and this radical is long lived but rapidly transfers an electron to oxygen and to *p*-nitroacetophenone. Trichloromethylperoxyl, Cl₃COO•, oxidises FIN₂ with k 1.2 × 10⁷ dm³ mol⁻¹ s⁻¹.

Diazoalkanes and diazonium ions are reactive species which have been widely used as sources of reactive intermediates such as carbenes, radicals, and carbocations.¹ Many years ago free radical chain mechanisms were postulated for the reactions of arenediazonium ions with phosphites² and alcohols³ which result in the replacement of the diazo group by hydrogen (hydrodediazoniation), and direct evidence for radical involvement came somewhat later from e.s.r. studies.⁴ The first really quantitative measurements on these chain reactions came from radiation studies, as radiolysis provides a simple way of initiating the reactions at a known rate.⁵ Details of kinetic chain lengths, the nature of propagation and termination steps, and the effects of substituent groups were obtained together with the values of some rate constant ratios. Some absolute rate constants for the one-electron reduction of the diazonium ions were measured using the technique of pulse radiolysis.⁶

Much more recently it has been reported that radical-ion chain reactions can occur on one-electron reduction or oxidation of diazoalkanes in aprotic solvents. From chemical⁷ and electrochemical⁸ studies of 9-diazofluorene (FlN_2), reactions (1) and (2) were postulated to account for high yields of difluoren-

$$\operatorname{FlN}_2^{-\bullet} + \operatorname{FlN}_2 \longrightarrow \operatorname{FlNNFl}^{-\bullet} + \operatorname{N}_2$$
 (1)

$$FINNFI^{-} + FIN_2 \longrightarrow FIN-NFI + FIN_2^{-} (2)$$

9-ylidenehydrazine (fluorenone azine) obtained, and from the electrochemical studies the rate of loss of the electron adduct FIN_2^{-*} was found to be second order in FIN_2^{-*} with a rate constant *ca.* 10⁵ dm³ mol⁻¹ s⁻¹, the actual value varying with supporting electrolyte. An analogous reaction has been postulated for electrochemical reduction of diazodiphenylmethane, but here the chain length is much shorter as a chain-terminating reaction involving hydrogen abstraction by $Ph_2CN_2^{-*}$ from acetonitrile solvent also occurs.⁹ It has been reported that addition of a proton donor in electrochemical reductions of FIN_2 and Ph_2CN_2 lowers the yield of the azine with the corresponding ketone hydrazone becoming a significant product.¹⁰

A rather similar reaction sequence, (3) and (4), is postulated to account for azine formation following chemical one-electron oxidation of diazodiphenylmethane.¹¹

$$Ph_2CN_2^{+} + Ph_2CN_2 \longrightarrow Ph_2CNNCPh_2^{+} + N_2$$
 (3)

 $Ph_2CNNCPh_2^{+*} + Ph_2CN_2 \longrightarrow$ $Ph_2C=N-N=CPh_2 + Ph_2CN_2^{+*}$ (4)

We have initiated a study of the radiation chemistry of these diazoalkanes, and in this paper we report the results of a pulse radiolysis study of diazofluorene. One conclusion from this study has already been reported.¹²

On radiolysis of water, HO• and e_{aq}^{-} radicals are produced, and these species have often been used to carry out one-electron oxidation or reduction of substrates in pulse radiolysis experiments. This simple approach is not possible with diazofluorene because this compound is not soluble in water. We have shown recently that one-electron oxidation of a number of water-insoluble but alcohol-soluble compounds of biological significance, such as α -tocopherol, occurs when an aqueous solution containing propan-2-ol, acetone, carbon tetrachloride, and air are pulse irradiated.¹³ The oxidising radical trichloromethylperoxyl, is formed by reactions (5)—(10)

$$H_2O \longrightarrow HO + e_{ag}$$
 (5)

$$HO_{\bullet} + Me_2CHOH \longrightarrow H_2O + Me_2COH$$
(6)

$$e_{aq}^{-} + Me_2CO \longrightarrow Me_2CO^{-}$$
(7)

$$Me_2CO^{-} + H_2O \longrightarrow Me_2COH + OH^{-}$$
 (8)

$$Me_{2}\dot{C}OH + CCl_{4} \longrightarrow Me_{2}CO + H^{+} + Cl^{-} + Cl_{3}C \cdot (9)$$

$$Cl_3C \cdot + O_2 \longrightarrow Cl_3COO \cdot$$
 (10)

and this oxidises the substrate, allowing detection of the product formed. In the absence of carbon tetrachloride and oxygen, Me_2COH can directly reduce the substrate of interest.¹⁴ A solvent containing 3:2:1 v/v water-propan-2-ol-acetone has been used for all experiments reported in this paper.

Experimental

Pulse-radiolysis experiments were done on the Brunel University 4 MeV linear accelerator with associated equipment for kinetic spectroscopy and computer analysis.¹⁴ 0.2 μ s pulses producing doses in the range 5—20 J kg⁻¹ (Gy) (0.5—2 krad) in a 1.5 cm optical path-length cell were used. Dosimetry was carried out by simultaneously measuring the absorbance at 500 nm due to (SCN)₂^{-•} produced in an aerated 0.01M-KSCN solution, taking $\Gamma \epsilon 2.12 \times 10^{-4} \text{ m}^2 \text{ J}^{-1}$, and the charge collected on a plate behind the cell.

The diazofluorene was given to us by Dr. D. Bethell. In all experiments the solvent was 3:2:1 v/v water (doubly distilled or Millipore filtered)-propan-2-ol-acetone (B.D.H. AnalaR). CCl₄ was B.D.H. (AnalaR) and benzoquinone was freshly sublimed. The pH was controlled with analytical grade sodium

[†] Present address: Chemistry Department, University of Auckland, Private Bag, Auckland, New Zealand.

hydroxide. Solutions were saturated with nitrogen (British Oxygen Ltd.) using the syringe-bubbling technique,¹⁵ or with air. All measurements were carried out at room temperature.

Results

Oxidation.-Diazofluorene absorbs strongly at wavelengths below 365 nm, limiting detection of transient species to wavelengths longer than this. When an air-saturated solution containing 0.1M-CCl₄ and 5×10^{-4} M-FlN₂ was pulsed only a very weak absorption at 370 nm was detected. In the absence of an easily detectable transient intermediate we looked for a possible reaction between Cl₃COO and FlN₂ using a competition technique. We have shown recently that the anion 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid)(ABTS) is readily oxidised by a number of radicals including Cl₃COO. to give a long lived radical product with a molar absorptivity of $36,000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$ at 415 nm, and that this compound is an excellent marker for pulse-radiolysis studies.¹⁶ Figure 1 shows the results of increasing the concentration of FIN₂ on the absorbance at 415 nm following pulse radiolysis of an airsaturated solution containing 0.1 m-CCl₄ and $5 \times 10^{-5} \text{m}$ -ABTS. Increasing FIN₂ lowered the absorption. No slower grow-in or decay of the ABTS⁺ radical due to possible electron transfer from ABTS to the oxidation product of FIN₂, or from FIN_2 to $ABTS^{+*}$, was detectable. By monitoring the rate of growth of $ABTS^{+*}$ in the absence of FIN_2 the rate constant of reaction (11) was found to be 1.2×10^9 dm³ mol⁻¹ s⁻¹ for this

$$Cl_3COO + ABTS \longrightarrow Cl_3COO + ABTS^+ (11)$$

solvent composition. The slope of the plot A°/A against [FIN₂]/[ABTS] shown in Figure 1 is 0.01, from which we obtain a value of 1.2×10^7 dm³ mol⁻¹ s⁻¹ for k_{12} . All our studies ^{13.17} on the reactions of Cl₃COO• indicated that it oxidises by an electron-transfer mechanism and we assume the initial product is FIN₂^{+•}.

$$Cl_3COO + FlN_2 \longrightarrow Products$$
 (12)

Reduction.—On pulsing a neutral nitrogen-saturated solution containing 2.5×10^{-3} M FlN₂ strong absorptions at wavelengths > 370 nm were observed, and the spectrum of the transient product 10 µs after the pulse is shown in Figure 2. A rapid grow-in to give a maximum absorption at *ca*. 10 µs was followed by a slower decay which was *ca*. 40% complete after

Figure 1. Competition plot showing the effect of increasing diazofluorene concentration on the absorbance at 415 nm due to ABTS⁺ formed by the reaction of ABTS with Cl₃COO·: [ABTS] 5×10^{-5} M (see text)

400 μ s. The kinetics of both growth and decay were followed at 510 nm. The grow-in was exponential with the observed first-order rate constant being proportional to the FlN₂ concentration. From the slope of plot (a) of Figure 3, k^1 against FlN₂ concentration, the rate constant for the reduction of FlN₂ by the propan-2-ol radical was found to be 4.6×10^8 dm³ mol⁻¹

Figure 2. Optical absorption spectra of transient species 10 μ s after a 10 Gy pulse for nitrogen-saturated 2.5 \times 10⁻³M-diazofluorene: (a) neutral solution, \bigcirc ; (b) 4 \times 10⁻³M-NaOH, \times ; (c) 0.1M-NaOH, \bigcirc

Figure 3. Plots of first-order rate constants for formation of absorption at 510 nm against diazofluorene concentration for nitrogen-saturated solution. Neutral solution, \bigcirc ; 4×10^{-3} M-NaOH, \times ; 0.1 M-NaOH, \bigcirc

s⁻¹. The decay followed simple second-order kinetics, with the half-life increasing with decreasing dose per pulse. From the slopes of plots of 1/A against time for doses of 9 and 20 Gy, $2k/\epsilon$ was found to be 9.60 \times 10 3 cm s $^{-1},$ where ϵ is the molar absorptivity of the transient species at 510 nm. The value of ε can be determined in principle if the yield of Me_2COH radicals, $\Gamma(Me_2COH)$, is known and all these radicals are scavenged by FIN₂. We determined $\Gamma(Me_2\dot{C}OH)$ by measuring the absorbance at 430 nm due to the benzosemiquinone radical anion (BQ^{-1}) following a 10 Gy pulse of a nitrogen-saturated solution containing 1×10^{3} M-benzoquinone. Reaction (13) is fast.¹⁸ Using the published value¹⁹ of ε_{BQ}^{430nm} of 7 300 dm³ mol⁻¹ cm⁻¹ Γ (Me₂COH) was found to be 4.6 × 10⁻⁷ mol J⁻¹. This figure is very close to that determined from measuring the absorbance due to the ascorbate radical-anion produced by the oxidation of ascorbic acid by Cl₃COO· in aerated waterpropan-2-ol-acetone solutions containing CCl₄ and ascorbic acid.¹⁷ From this measured yield of Me₂COH, the molar absorptivity of the reduced diazofluorene transient species at 510 nm was 3 853 dm³ mol⁻¹ cm⁻¹, and hence 2k for the second-order decay of the transient was $3.7 \times 10^8 \text{ dm}^3 \text{ mol}^{-1}$ s ¹.

When the pH of the solutions were raised by adding sodium hydroxide, the spectrum of the transient species changed. Figure 2 also shows the spectra obtained from solutions containing 4×10^{-3} M-NaOH, (b), and 0.1M-NaOH, (c). The species produced in 0.1M-NaOH was long lived, showing almost no decay over 400 µs. However, the mixed spectrum obtained at 4×10^{-3} M-NaOH did decay appreciably over 400 µs. Figure 4 shows the change in the maximum absorbance at 430 and 510 nm following a 10 Gy pulse as a function of sodium hydroxide

Figure 4. Maximum absorbance after a 10 Gy pulse of nitrogensaturated 10^{-3} M-diazofluorene as a function of sodium hydroxide concentration: \bullet , 430 nm; \bigcirc , 510 nm

concentration. From this plot it can be deduced that the transient formed in neutral solution is a weak acid with a pK_a of *ca.* 11—12. Figure 3 also shows the observed first-order constants for the grow-in at 510 nm in 4×10^{-3} M-NaOH solution and at 430 nm for 0.1M-NaOH solution. In water the pK_a of Me₂COH²⁰ is 12.1, and therefore at high concentration of NaOH the reducing radical is its conjugate base Me₂CO⁻⁺, the electron adduct of acetone. From the slope of plot (b) the second-order rate constant for the reduction of FlN₂ by Me₂CO⁻⁺ is 6.1 × 10⁸ dm³ mol⁻¹ s⁻¹.

When air was admitted to the system under neutral conditions the yield of the transient product was lowered, but its rate of decay was not affected, showing the transient species did not react with oxygen, the decrease in yield being due to competition between O_2 and FIN_2 for Me_2COH . Experiments with mixtures of diazofluorene and benzoquinone also showed simple competition between BQ and FlN_2 for Me₂COH, but not further reaction between BQ^{-1} and FIN_2 or between BQand the FlN₂ transient product. Similar experiments were done with mixtures of diazofluorene and p-nitroacetophenone (PNAP). The electron adduct of the latter compound is long lived and has an absorption peak at 550 nm, at which wavelength the FlN₂ product does not absorb.²¹ Again there was simple competition between PNAP and FlN₂ for the reducing radical, the absorbance at 550 nm decreasing with increasing [FIN₂]/[PNAP], with no evidence for reactions between PNAP^{-•} and FlN₂ or PNAP and the FlN₂ transient product, the absorbance at 550 nm remaining constant over 400 μs.

However, in the presence of 0.1M-NaOH, the absorbance at 430 nm decayed rapidly in the presence of oxygen. On pulsing solutions containing 2.5×10^{-3} M-FlN₂ and $(1-10) \times 10^{-4}$ M-PNAP there was an exponential grow-in of PNAP⁻⁺, and the observed first-order rate constants monitored at 550 nm were proportional to PNAP concentration. From the slope of the plot shown in Figure 5, the second-order rate constant for the electron-transfer reaction from the FlN₂ transient species to PNAP was found to be 4.3×10^8 dm³ mol⁻¹ s⁻¹.

We carried out an experiment to see if the radical produced by reduction of FlN_2 in neutral solution could act as an oxidising agent, *i.e.* could be further reduced. As ABTS is readily oxidised to a radical with a very large molar absorptivity we pulsed a solution containing 2×10^{-3} M-FlN₂ and 5×10^{-4} M-ABTS. No ABTS⁺⁺ was formed and the rate of decay of

Figure 5. Plot of first-order rate constant for formation of absorbance at 550 nm due to PNAP^{-•} formed by electron transfer from $FlN_2^{-•}$ as a function of *p*-nitroacetophenone concentration for nitrogen-saturated 2.5 × 10^{-3} M diazofluorene

the FIN_2 radical (followed at 510 nm) was the same as in the absence of ABTS, showing ABTS did not reduce the radical on the time scale of these experiments.

Discussion

At the time of these experiments the literature showed there was some doubt on the lifetime of the election adduct of FlN₂, $FlN_2^{-\bullet}$. Based on chemical and electrochemical experiments one group of workers considered it to be long lived ^{7.8} and the second group^{22.23} considered nitrogen was rapidly lost to produce the fluorene carbene anion radical Fl^{-*}. Thus we were uncertain as to whether the transient radicals we were detecting on reduction of FlN₂ were FlN₂H· and FlN₂^{-•} in neutral and alkaline solution respectively or FlH. and Fl^{-*}. We have reported that we found a low concentration of oxygen protected FIN_2 on ⁶⁰Co γ -irradiation at high pH, and how this fact together with our pulse-radiolysis observation that the reduced radical produced at high pH reacts rapidly with oxygen shows conclusively that rapid loss of nitrogen does not occur.¹¹ After we had submitted that note the second group reported further electrochemical experiments which also now showed that FlN_2^{-4} in fact did not rapidly lose nitrogen.²⁴ Thus we need not consider the possibility of rapid nitrogen elimination further in this discussion.

At high pH the reduction of FIN_2 must proceed by electron transfer from the electron adduct of acetone to diazofluorene, reaction (14), with k_{14} 6.2 × 10⁸ dm³ mol⁻¹ s⁻¹. Parker and

$$Me_2CO^{-} + FIN_2 - Me_2CO + FIN_2^{-}$$
 (14)

Bethell⁸ have measured the rate constant for the dimerisation of FIN_2^{-*} in acetonitrile, and found a value of the order of 1×10^5 dm³ mol⁻¹ s⁻¹, the actual value varying a little with the nature of the supporting electrolyte. If FIN_2^{-*} dimerised with this rate constant in our solvent system, under our pulse conditions where we produce FIN_2^{-*} with an initial concentration of *ca.* 4 × 10⁻⁶ mol dm⁻³, the half-life would be *ca.* 2 s. Thus the fact that we see no decay over 400 µs is not inconsistent with the electrochemical data.

Both Bethell ^{7.8} and Hawley and McDonald ²⁴ consider a reaction between FlN_2^{-*} and FlN_2 possible, in fact this being a key step in the mechanism of the chain reaction which leads to fluorenone azine. If such a reaction is occurring in our system we must consider three possibilities to explain our results.

(i) It is too slow to observe over 400 μ s and therefore must have a rate constant much less than 10⁵ dm³ mol⁻¹ s⁻¹.

(ii) It is too fast to observe and the spectrum (c) of Figure 2 is not that of FIN_2^{-*} but that of $(FIN_2)_2^{-*}$ the rate constant for reaction (15) being greater than $10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$.

$$\operatorname{FlN}_2^{-\bullet} + \operatorname{FlN}_2 \longrightarrow (\operatorname{FlN}_2)_2^{-\bullet}$$
 (15)

(iii) The reaction between Me_2CO and FIN_2 is very fast, $>10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, and the kinetics we are measuring in Figure 3 at high pH are of reaction (15) and not (14).

If either (ii) or (iii) is correct, then $(F|N_2)_2^{-*}$ undergoes electron-transfer reaction to oxygen to give back $2F|N_2$, which is plausible, and the unimolecular decomposition of this species is a slow process with $t_2 \ge 400 \ \mu$ s. We can rule out the possibility that this unimolecular reaction is so fast that the species we are observing is $F|NNF|^{-*}$ because electron transfer to oxygen from the latter species would not regenerate all the $F|N_2$.

However, we reject arguments (ii) and (iii) for the following reasons. The spectrum of the transient product in neutral solution, (a) of Figure 2, is very similar to that of the fluorenyl

radical,²⁵ implying it is a carbon-centred radical and therefore (1) rather than its tautomer (2) in agreement with the views of Hawley and McDonald.^{10,26} The radical Me₂COH is considered to reduce by an electron-transfer pathway rather than by hydrogen-atom transfer. This means FIN_2^{-*} must be formed first and then undergo rapid protonation. The spectrum (b) of Figure 2 and its decay characteristics imply we are observing a rapidly maintained equilibrium [reaction (16)].

$$FIN_2H \cdot + OH^- \Longrightarrow FIN_2^{-1} + H_2O$$
 (16)

If FIN_2^{-*} reacted fast with FIN_2 , then at intermediate pH values sufficient to give some FIN_2^{-*} , reaction (16) would be displaced to the right by reaction (15), and equilibrium would not be maintained during the second-order decay of FIN_2H .

Thus we consider the transient species with spectrum (c) of Figure 2 to be the electron adduct FIN_2^{-1} and that it is k_{14} which has the value 6.2×10^8 dm³ mol⁻¹ s⁻¹.

Hawley and McDonald have shown that the presence of the proton donor diethyl malonate during electroreduction of FlN₂ and Ph₂CN₂ in aprotic solvent leads to some formation of the corresponding ketone hydrazones Fl=NNH₂, and Ph₂C=NNH₂, respectively. Fluorenone hydrazone would be the product of disproportionation of FlN₂H• [reaction (17)]. However, in a preliminary experiment involving the ⁶⁰Co- γ -irradiation of FlN₂ in neutral propan-2-ol-water, we find the spectrum of the products and $\Gamma(FLN_2)$ are consistent with 9,9'-bifluorenyl being the major radiation product.²⁷

$$2FIN_2H \cdot \longrightarrow FI = NNH_2 + FIN_2$$
(17)

The fact that we could not detect a reaction between FIN_2^{-1} and FIN_2 , either reaction (1) or (15), over 400 µs implies the rate constant must be $< 10^5 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$. However, even if it is three powers of ten lower than this it could still be the propagating step in the chemically and electrochemically initiated chain reactions postulated by Bethell and Parker and by Hawley and McDonald.

That FlN_2^{-*} transfers an electron to *p*-nitroacetophenone implies $E^{\circ}_{\text{FlN}_2 \mid \text{FlN}_2^{--}}$ is < -0.36 V, (NHE), the value of $E^{\circ}_{\text{PNAP} \mid \text{PNAP}^{-1^4}}$ ($E^{\circ}_{\text{O}_2 \mid \text{O}_2^{--}}$ is -0.16 V).

Although Bethell and his co-workers¹¹ have published extensively on the one-electron oxidation of Ph_2CN_2 no similar experiments on FIN_2 have been reported. It was therefore of interest to see if FIN_2 could be oxidised by oxidising radicals known to be electron-transfer agents. As FIN_2 is water-insoluble Cl_3COO was perhaps the only radical which could be used. Our competition kinetics results show clearly that FIN_2 is oxidised by this radical, but at a rate considerably lower than that for many other substrates such as for example ascorbate, phenothiazines, and phenolate ions.¹⁷ If the rate of electron transfer is related to the redox potential, E° $FIN_2^{++}|FIN_2$ (Marcus theory), onemight have expected $FIN_2^{+\circ}$ to be reasonably strong oxidising radical and oxidise ABTS. This clearly did not happen. Further work is required to decide whether this reaction is slow or whether FlN_2^{++} reacts further with FlN_2 in a fast step.

Acknowledgements

We thank the National Foundation for Cancer Research for financial support (to J. E. P.) and Dr. D. Bethell for a gift of the diazofluorene.

References

- 1 S. Patai, 'The Chemistry of the Diazonium and Diazo Groups,' Wiley, Chichester, 1978.
- 2 N. Kornblum, G. D. Cooper, and J. E. Taylor, J. Am. Chem. Soc., 1950, 72, 3013; N. Kornblum, A. E. Kelley, and G. D. Cooper, *ibid.*, 1952, 74, 3074.
- 3 D. F. De Tar and M. N. Turetzky, J. Am. Chem. Soc., 1955, 77, 1745; D. F. De Tar and T. Kosugi, *ibid.*, 1958, **80**, 6072.
- 4 A. L. J. Beckwith and R. O. C. Norman, J. Chem. Soc. B, 1968, 403;
 A. L. J. Beckwith, Aust. J. Chem., 1972, 25, 1887.
- 5 J. E. Packer, D. B. House, and E. J. Rasburn, J. Chem. Soc. B., 1971, 1574; J. E. Packer, R. K. Richardson, P. J. Soole, and D. R. Webster, J. Chem. Soc., Perkin Trans. 2, 1974, 1472; C. J. Heighway, J. E. Packer, and R. K. Richardson, Tetrahedron Lett., 1974, 4441; J. E. Packer and R. K. Richardson, J. Chem. Soc., Perkin Trans. 2, 1975, 751; J. E. Packer, C. J. Heighway, H. M. Miller, and B. C. Dobson, Aust. J. Chem., 1980, 33, 965.
- 6 J. E. Packer, J. Mönig, and B. C. Dobson, Aust. J. Chem., 1981, 34, 1433.
- 7 J. M. Bakke, D. Bethell, P. J. Galsworthy, K. L. Handoo, and D. Jackson, J. Chem. Soc., Chem. Commun., 1979, 890.
- 8 V. D. Parker and D. Bethell, Acta Chem. Scand., 1981, B35, 691.
- 9 V. D. Parker and D. Bethell, Acta Chem. Scand., 1981, B35, 72; D. Bethell and V. D. Parker, J. Chem. Soc., Perkin Trans. 2, 1982, 841.

- 10 F. M. Triebe, M. D. Hawley, and R. N. McDonald, J. Chem. Soc., Chem. Commun., 1980, 574.
- 11 D. Bethell, K. L. Handoo, S. A. Fairhurst, and L. H. Sutcliffe, J. Chem. Soc., Perkin Trans. 2, 1979, 707.
- 12 J. E. Packer and R. L. Willson, J. Chem. Soc., Chem. Commun., 1983, 733.
- 13 J. E. Packer, T. F. Slater, and R. L. Willson, *Nature*, 1979, 278, 737; J. E. Packer, J. S. Mahood, V. O. Mora-Arellano, T. F. Slater, R. L. Willson, and B. S. Wolfenden, *Biochem. Biophys. Res. Commun.*, 1981, 98, 901.
- 14 R. L. Willson, in 'Biochemical Mechanisms of Liver Injury,' ed. T. F. Slater, Academic Press, London, 1978, ch. 4.
- 15 R. L. Willson, Int. J. Radiat. Biol., 1970, 17, 349.
- 16 B. F. Wolfenden and R. L. Willson, J. Chem. Soc., Perkin Trans. 2, 1982, 805.
- 17 J. E. Packer, R. L. Willson, D. Bahnemann, and K.-D. Asmus, J. Chem. Soc., Perkin Trans. 2, 1980, 296.
- 18 R. L. Willson, Chem. Commun., 1971, 1249.
- 19 G. E. Adams and B. D. Michael, Trans Faraday Soc., 1967, 63, 1171.
- 20 K.-D. Asmus, A. Henglein, A. Wigger, and G. Beck. Ber. Bunsenges. Phys. Chem., 1966, 70, 756.
- 21 G. E. Adams and R. L. Willson, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 719.
- 22 R. N. McDonald, K. J. Borhani, and M. D. Hawley, J. Am. Chem. Soc., 1978, 100, 995.
- 23 R. N. McDonald, and K.-W. Lin, J. Am. Chem. Soc., 1978, 100, 8028.
- 24 D. E. Herbranson, F. J. Theisen, M. D. Hawley, and R. N. McDonald, J. Am. Chem. Soc., 1983, 105, 2544.
- 25 D. Griller, C. R. Montgomery, M. S. Platz, J. C. Scaiano, and L. Heidel, J. Am. Chem. Soc., 1982, 104, 6813.
- 26 R. N. McDonald, F. M. Triebe, J. R. January, K. J. Borhani, and M. D. Hawley, J. Am. Chem. Soc., 1980, 102, 7867.
- 27 J. E. Packer, B. R. Ashcroft, and P. M. Hamilton, unpublished results.

Received 26th October 1983; Paper 3/1905